Growth changes of the musculoskeletal system
Children fracture healing and remodeling

Dr KL Liu
Department of Orthopaedics and Traumatology
PWH
Agenda

• Basic Principles in Fracture Healing and Remodeling

• Non Accidental Injury

• Principles of Treatment Options
Epidemiology of children fracture

<table>
<thead>
<tr>
<th>Fracture Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Distal radius fracture</td>
<td>20.2%</td>
</tr>
<tr>
<td>2 Supracondylar humeral</td>
<td>17.9%</td>
</tr>
<tr>
<td>3 Forearm shaft</td>
<td>14.9%</td>
</tr>
<tr>
<td>4 Tibial Shaft</td>
<td>11.9%</td>
</tr>
<tr>
<td>5 Fingers & hand</td>
<td>4.9%</td>
</tr>
<tr>
<td>6 Lateral condyle</td>
<td>4.8%</td>
</tr>
<tr>
<td>7 Femoral shaft</td>
<td>4.6%</td>
</tr>
<tr>
<td>8 Ankle</td>
<td>3.1%</td>
</tr>
<tr>
<td>9 Proximal radius (head & neck)</td>
<td>2.9%</td>
</tr>
<tr>
<td>10 Humeral shaft</td>
<td>2.8%</td>
</tr>
<tr>
<td>11 Medial Condyle humeral</td>
<td>2.5%</td>
</tr>
<tr>
<td>12 Olecranon</td>
<td>1.7%</td>
</tr>
<tr>
<td>13 Distal radius epiphyseal</td>
<td>1.7%</td>
</tr>
<tr>
<td>14 Elbow dislocation</td>
<td>0.8%</td>
</tr>
<tr>
<td>15 Rarities</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

Paediatric Fracture Patterns

<table>
<thead>
<tr>
<th>Fracture types</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distal Radius</td>
<td>20.2</td>
</tr>
<tr>
<td>Supracondylar humeral</td>
<td>17.9</td>
</tr>
<tr>
<td>Forearm shaft</td>
<td>14.9</td>
</tr>
<tr>
<td>Tibial shaft</td>
<td>11.9</td>
</tr>
<tr>
<td>Femoral shaft</td>
<td>5.4</td>
</tr>
<tr>
<td>Medial condyle humeral</td>
<td>4.9</td>
</tr>
<tr>
<td>Olecranon</td>
<td>4.8</td>
</tr>
<tr>
<td>Lateral Condyle humeral</td>
<td>4.6</td>
</tr>
<tr>
<td>Proximal radius(head & neck)</td>
<td>3.1</td>
</tr>
<tr>
<td>Lateral radius epiphyseal</td>
<td>2.9</td>
</tr>
<tr>
<td>Medial radius epiphyseal</td>
<td>2.8</td>
</tr>
<tr>
<td>Fingers & Hand</td>
<td>2.5</td>
</tr>
<tr>
<td>Others</td>
<td>1.7</td>
</tr>
<tr>
<td>Others</td>
<td>1.7</td>
</tr>
<tr>
<td>Others</td>
<td>0.8</td>
</tr>
<tr>
<td>Elbow dislocation</td>
<td></td>
</tr>
</tbody>
</table>

65%

Fracture types
Children ≠ Small adult
Children ≠
Small adult

• Bone quality
• Periosteum
• Ligament
• Growth plate
Bone

Higher collagen to bone ratio in paediatric bone

- Lower modulus of elasticity (less brittle) and higher ultimate strain to failure ratio than adult.
Plastic Deformation

- Fixed bending remains when bone deformed past elastic limit
- Most commonly in forearm, fibula
- Periosteum intact and thus usually no periosteal callus
- Permanent deformity can result
(A) direct impact perpendicular to the axis of the long bone:

-periosteal stripping on convex side of the fracture:

greenstick fracture
Plastic Deformation

(B) longitudinal compression – impact parallel to the axis of the long bone results in incomplete fractures

(1) bowing (plastic deformity)
Plastic Deformation

- Remodeling not as reliable
- Significant curvature should be corrected
- General anesthesia
- Considerable force
- Slowly applied over a padded fulcrum
Comminuted fracture uncommon

– Higher cellular and porous
 • Reduce tensile strength
 • Reduce the tendency of fractures to propagate
Bone

– Bone fails in both tension and compression

• Mechanism of buckle fracture in children
Bone transitions

- Between the metaphysis and diaphysis cause a mechanical discontinuity leading to certain fracture types
Buckle or Torus Fracture

- Compression failure
- Stable
- Usually at metaphyseal / diaphyseal junction
Bone-Blood Supply

– The blood supply is different
 • a rich metaphyseal circulation with fine capillary loops ending at the physis

 • In neonate, small vessels may transverse the physis and end in epiphysis
Periosteum

- Periosteum in children is thicker and stronger
 - Offer additional resistance to shear force
 - Little displacement, help in reduction
Greenstick Fractures

- Bending mechanism
- Failure on tension side
- Incomplete fracture, plastic deformation on compression side
- May need to complete fracture to realign
Ligaments

• Ligaments in children are functionally stronger than bone
 – Force that procedure sprains in adults result in fracture in children
Physeal Fractures

• Traditionally believed to occur primarily through **zone of hypertrophy**

• Some fractures may traverse more than one zone
Growth plate

- The physis is weaker than bone in torsion, shear and bending
- Potential for remodeling
- Growth plate injury causes deformity
Physeal fractures

• Salter-Harris classification
 – I - # across physis
 – II - # across physis and metaphysis
 – III - # across part of physis & epiphysis
 – IV - # across metaphysis, physis & epiphysis
 – V - crush injury of physis without fracture
 – VI - Perichondral ring injury
Physeal fracture

• Type I
 – Transphyseal fracture involving the hypertrophic and calcified zones
 – Prognosis is excellent, although complete or partial growth arrest may occur in displaced fracture
• Type II
 – Transphyseal fracture that exits the metaphysis
 – The metaphyseal fragment is called Thurston Holland fragment
 – The periosteal hinge is intact on the side with metaphyseal fragment
 – Prognosis is excellent, although complete or partial growth arrest may occur in displaced fracture
• Type III
 – Exits the epiphysis, causing intra-articular disruption
 – anatomic reduction and fixation without violating the physis are essential
 – Prognosis is guarded, partial growth arrest and angular deformity are common
• Type IV
 – Transverse epiphysis, physis and metaphysis
 – anatomic reduction and fixation without violating the physis are essential
 – Prognosis is guarded, partial growth arrest and angular deformity are common
• Type V
 – Diagnosis is generally made retrospectively
 – Prognosis is poor
 – growth arrest and partial physeal closure common
Growth Arrest Secondary to Physeal Injury

• Complete cessation → limb length discrepancy

• Partial cessation
 → angular deformity if peripheral
 → progressive shortening if central
Epiphysis or Apophysis?

- Epiphysis - forces are compressive on physeal plate
- Apophysis - forces are tensile
- Histologically distinct
Apophyseal Injuries

- Tibial tubercle
- Medial Epicondyle
- May be preceded by chronic injury/repetitive processes
Non-accidental injury
Radiographic Findings in NAI
Radiographic Findings in NAI

- Fracture pattern not specific (spiral, transverse, etc.)
- Metaphyseal Corner # or Bucket Handle #
- Multiple fractures at different stages of healing highly specific
• Humerus diaphyseal # < 3 yo are almost always associated with NAI

• Femur # < 1 yo are usually due to NAI

• Risk or re-abuse is 35% and risk of death 5-10%
Metaphyseal Corner # or Bucket Handle #

- Pathognomonic of NAI
- Traction/rotation mechanism of injury
- Planar fracture through primary spongiosa
DDX: NAI #

- Accidental trauma/Birth trauma
- Osteogenesis Imperfecta
- Metabolic Bone Disease (rickets, etc.)
- Physiologic periostitis
Management
General Principles

• Acute Fracture Care
 – immobilization of joints above and below
 • provides comfort, reduces deformity, reduces risk of additional injury
 • cast or splint depending on anticipated swelling & compartment syndrome
Post-fracture care

• Post-fracture Care
 – F/U to ensure union & restoration of alignment and length
Special Considerations

- Open fracture
- Compartment Syndrome
- Pathologic Fracture
 - tumors e.g. osteosarcoma
 - hereditary diseases e.g. osteogenesis imperfecta
 - metabolic diseases e.g. rickets
 - neuromuscular diseases e.g. Muscular Dystrophy
 - infectious diseases e.g. osteomyelitis
Treatment options
Most upper limb # - 90/90 elevation
Most Lower limb #
Back slab
Treatment of minimal / Un-displaced #
Completely Displaced Fractures

Closed/Open Reduction + K-wire Fixation + Casting
Excellent remodelling power
Forearm shaft
Tibial Shaft, Wedging Works Beautifully!
Traction Principle

- Traction produces a reduction through the surrounding soft parts which align the fragments by their tension.
Purpose

* Regain normal length and alignment of involved bone
* Reduce and immobilize a fractured bone
* Lessen or eliminate muscle spasms
* Relieve pressure on nerves, especially spinal
* Prevent or reduce skeletal deformities or muscle contractures
Mechanism of traction

- Every force has an equal and opposite force
- Applied in different ways
 - Fixed traction with a splint
 - Fixed traction using gravity
 - Sliding traction
 - Balanced traction
Classification

- Defined by force
 - Traction by gravity
 - Skin traction
 - Skeletal traction

- Defined by configuration
 - Fixed traction
 - Balance traction
 - Combined traction
A: Traction by Gravity
B: Fixed skin traction
C: Balanced skin traction
D: Russell skin traction
E: Skeletal traction with splint + knee flexion piece
Skin traction

• 12 lb (5kg) is the upper limit
Skeletal Traction

- Max. 18kg (40lb) can be used
- Allow joint motion exercise
- Useful for femur fracture in paediatric
TIBIAL TRACTION – RIGHT AND WRONG

A Yes!

B pin clear of skin and horizontal

C No!
pin skew

D pin touches

E the cord less easily slips off a cork

F

G No!

H too far anteriorly

skew

easily slips off
External fixation
Flexible and Rigid Intramedullary Nail
Compression plating
Children $\not\equiv$ Small Adult
Thankyou