Principle of Wound coverage and Flap Surgery

Tse WL
AADO. HKSSH
Nursing symposium

Why Wounds need to be covered?

To avoid:

- Infection: Acute or Chronic
- Exposure of important tissues : nerve, vessels, tendon, bone, joint
- Electrolyte loss
- Protein loss

Consequence of poor wound coverage

- Uncontrolled sepsis life threatening
- Extensive scarring cosmetic and functional deficit

 Ideally, wound coverage should be achieved within 1 week after injury

Management of Severe limb injury

Primary Goal (initial healing and infection control)

Secondary goal (functional reconstruction)

- Skeletal stability
- Adequate blood supply
- Soft tissue coverage

- Nerve repair/graft
- Muscle & tendon repair/transfer
- Bone & Joint reconstruction

Adverse Factors for wound healing

- Infection
- Retained foreign bodies
- Retained devitalized tissue
- Poor circulation
- Radiation or chemotherapy
- Systemic factors: malnutrition, immunosuppression, medical diseases e.g DM, PVD, smoking, obesity
- Wrong choice of treatment

Patient preparation

- Local:
 - adequate debridement
 - Dressing care: keep wound clean and tissue viability, barrier to infection
- Systemic:
 - Nutritional support
 - Antibiotics
 - Pain control
 - Stress relief

Dresssing

- Debridement (of non viable tissue)
 - e.g. Iroxol
- Decontamination (of infective agents)
 - Seasorb silver (contain alginate to trap water)
 - Anticoat (silver only)
 - Aquacel (hydrofiber)
- Promotion of healing
 - Solcoseryl
 - Actovergin
 - Collagen
- External stimulation :
 - Hyphecan

Optimal Environment

Local tissue circulation

Bacteriology

- All wounds are colonized by bacteria
- Presence of bacteria ≠ infection
- Established infection does not preclude wound coverage surgery
 - Except certain bacteria
 - Streptococcus
 - Streptolysin
 - Clear thin exudate
 - Pseudomonas
 - Green colour exudate

Bacteriology

- Rational use of antibiotics
- Nature of wounds
- Intelligent guess
- Avoid prolonged topical antibiotics
- Surgical debridement of dead and infected tissues

Anatomy

- What structures are missing
 - Loss of major peripheral nerves
- What needs to be replaced
 - Cavity filling
- What tissues available nearby
 - Vascular anatomy
- What tissues available distant
 - Free tissue transfer
- Overall vascular status of the limb

WOUND PREPARATION

Topical Negative Pressure (VAC)

Vacuum Assisted Closure

VAC regime

- Negative pressure
 - Most wound: 125mmHg
 - 50-125mmHg for skin grafts
- Cycle:
 - Constant for 48 hr then intermittent (5minon/2min off)
- Dressing changes
 - Most wound: 48 hr then every 4-5 days
 - Infected: less than 48 hr
 - Clean wound: 4-5 days

Reconstruction ladder

- Primary closure
- Secondary intention "wound contraction"
- Skin graft
- Flap
 - Local
 - Distant
 - Free
- Select the simplest method that fulfill wound requirement

Skin graft

- Full thickness (including dermis) or splitted (~0.015 inches)
- Survive on vascularized bed by "imbibrition"
- May achieve sensation by ingrowth of sensory nerve into the graft

SSG preparation

Tie over

Donar site

Keep dressing intact x
 2-3 weeks unless infection is suspected

- Failed by poorly vascularized bed, infection, shearing
- Bulky dressing, "Tie over dressing", VAC, plaster immobilization
- For SSG: inspect after D5, FTSG: D7
- Skin contracture, hyperpigmentation

SSG

SSG vs FTSG

• SSG

- Depends on the vascularity of recipient bed
- Scars usually bad
- Good for large areas
- Donor sites can be used repeatedly

• FTSG

- Limited supply
- Good skin like quality
- Different mechanism of recipient site incorporation
- Can be used on bare tendon or bone

FLAPs

- Skin flap
 - Subcutaneous tissues
 - Random pattern 1:1 length to width ratio
 - Pedicle
 - Major artery
 - Perforator
 - Could be of high length to width ratio
 - Venous drainage of flap
 - Free
 - microsurgery

Choices

- Muscle flap
 - Cavity to fill
 - Bring in vascularity
- Myocutaneous flap
 - Donor site morbidity
- Composite tissue transfer
 - Skin, Muscles, Fascia, Tendons, Nerves,
 Blood vessels, Periosteum, Bone, Whole digits

Decision Making

- Tissues required
- Scarring and flap appearance
- Donor site morbidity
- Patient acceptance
- Surgeon factor

How to choose the correct flap? Recipient site:

- Where
- Size
- Shape
- Presence of contracture
- Nature

Nature of recipient site

- Clean / contaminated / infected ?
- Fresh / Granulation bed ?
- Tissue lost: muscle, tendon, nerve, bone
 - Thickness
 - Support
 - Sensation
 - motion
- Tissue status surrounding the wound : circulation, adjacent joint

Choice of Donar

- Healthy with no previous surgery, injury, irradiation
- Minimal disturbance in appearance and function after flap harvest
- Stable arterial supply, few variation
- Diameter of artery, length of pedicle
- Cutaneous nerve

Different categories of FLAPs

- Blood supply
 - Random or Axial
- Method of transfer
 - Pedicle or Free
- Location
 - Local, regional, distant

VY Advancement

Local lateral arm flap

Muscle flaps

Gastronemius Muscle flap

Flap for NF

Latissimus dorsi myocutaneous flap

Pedicle flap

PIA (posterior interosseous flap)

Radial Forearm Flap

Radial Forearm Flap

Foucher (1st DMA flap)

Saphenous flap

Lateral supramalleolar flap

Free flaps

Dorsalis pedes flap

LD + SA flap

Vascularized fibula bone graft

Free gracilis flap

Flaps may fail!

- No pressure /compression on pedicle
- Elevation
- Hydration
- Anticoagulation
- Close monitoring of circulation
- Haematoma
- Infection

