Introduction

Basic Principles of Fracture Treatment

- Reduction
- Immobilization
 - Temporarily
 - Definitive
- Rehabilitation

Plaster Cast
Different Types of Casting Materials

• Plaster of Paris (POP)
• Synthetic resin
Plaster of Paris (POP)

- **Gypsum**
 - Early use in *Paris* to make building plaster and cement
 - Chemical formula: calcium sulphate dihydrate \((CaSO_4\cdot2H_2O) \)

- **Produced by heating** gypsum **to about 150°C**
 - \(CaSO_4\cdot2H_2O + heat \rightarrow CaSO_4\cdot0.5H_2O + 1.5H_2O \) (released as steam)
 - When the dry plaster powder mixed with water, it reforms into gypsum → *exothermic reaction*
Plaster of Paris (POP)

- **Setting time**
 - Starts about 10 minutes after mixing and is complete in about 45 minutes
 - Not fully set for 72 hours

- Impregnating fabric materials with gypsum to make *plaster bandage*
 - **Gyspona:** on leno cloth
 - **Orthoflex:** on rubber elastic fabric
Synthetic Resin

- Polyurethane resin
 - Formed by a di-isocyanate and a polyol in the presence of a catalyst
 - Formula of isocyanate: $C_6H_5.NCO$

- Activation for the resin polymerization
 - Usually water

- Synthetic resin bandages (Fabric + resins)
 - eg. **Dynacast**: glass fiber fabric + polyurethane resin
Ideal Casting Material

- Easily applicable
- Conforming to the injured limb
- Able to set rapidly
- Adequate strength to hold reduction
- Radiolucent
- Light
- Water resistant
- Good ventilation
Advantages

<table>
<thead>
<tr>
<th>POP</th>
<th>Synthetic Resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inexpensive</td>
<td>Shorter setting time</td>
</tr>
<tr>
<td>Good molding capacity</td>
<td>More radiolucent</td>
</tr>
<tr>
<td>Long storage time</td>
<td>Lighter</td>
</tr>
<tr>
<td>Easy to handle</td>
<td>Stronger</td>
</tr>
<tr>
<td></td>
<td>Water resistant</td>
</tr>
<tr>
<td></td>
<td>Better ventilation</td>
</tr>
</tbody>
</table>

Resin Bandage is not a superior material
CR + POP

What does it mean?
CR (*Close reduction*)

- Manipulation of the fracture to improve the position of the fragments
- As soon as possible
- Under appropriate anaesthesia/muscle relaxant/sedation

Manoeuvre:
- **Traction**
 - Distal part of the limb is pulled in line of the bone
- **Counter-traction**
- **Manipulation**
 - As the fragments disengaged, they are repositioned (by reversing the original direction of forces)
- May need to exaggerate the deformity first
POP

- Application of cast
- Maintain the position with a “3-point fixation” Casting
Closed Reduction of Colles’ Fracture

I. Continuous traction with counter-traction

II. Dis-impaction & Manipulation

III. Reduce dorsal angulation: wrist flexion 20° to 30°

IV. Correct radial deviation: wrist ulnar derivation 10°
Exaggerate the deformity → release the interlocking without excessive traction

Fragments repositioned by reversing the deforming force

Reduction maintained by the soft tissue hinge (ligamentotaxis)
Molding ➔ 3-Points Fixation:

• A third force to neutralise the couples and the system becomes stable
• It takes a **curved cast to produce a straight bone**
Poor Manipulation & Reduction

- Insufficient relaxation
- Inadequate reduction
- Poor understanding of fracture mechanics
- Fail to hold the alignment after reduction
Preparation before casting

- Determine the aim: Temporarily Vs Definitive
- Choose the appropriate casting material
- Use the appropriate size bandage
 - e.g. 4” hand & forearm, 6” leg, 8” thigh
- Pain control for close reduction
- Get an assistant
Basic Steps for Plaster Application

- Reduction of fracture
- Padding
 - Tubegauze / stockinette
 - Velban application
- Activate plaster bandage
- Plaster bandage application
- Molding
- Trimming & reinforcement
- Follow up monitoring and care
- Removal
Stockinette first
Extending to the joint above and longer than the limb for easy handling of the extremity
Padding – Velban

- Smooth and even
- Overlapping 50% of the preceding turn
- Thin layer is enough, otherwise would affect the fitness & strength of the cast
- **Thicker at bony prominences**
- Control swelling
Plaster Bandage Activation

- Lifted with dry hands
- Thorough immersion in water at room temperature
- Gently squeezed out water until no more bubbles
- Remove from water and further squeeze out excessive water

Roll out 10-20cm POP bandage before at 30° angle to allow air bubbles to escape
Water at room temperature

- Cold water: retards setting and reduce cast strength
- Hot water: may cause burn injury
Plaster Bandage Application

- **Smoothly** and evenly applied
 - Cast may breaks at the junction between thick and thin layers (stress risers)
- Applied with **finger tips** to ensure that the bandage will not be too tight
- Continuous folds to cover at least half of previous fold
- Smooth out every layer to remove air
- **Figure-of-8** when crossing joint, prevent in-folding of plaster causing sore
Plaster Bandage Application

- Cutting out or out-folding the angles of POP slab to avoid pressure point at corner
- Stockinette fold back at the end to make the edge smooth
Molding

- To fit external anatomy of the limb & create 3-point fixation
- Start during application
- Continuous & Dynamic
- Use palms and thenar eminences (NOT fingers)
What are they doing?
Molding

3-point fixation for distal radius fracture

Excluding the 5th finger from the grip to allow the ample accommodation for the transverse palmar arch

Molding of forearm to stretch interosseous membrane

Oblong shape to maintain palmer arch
Trimming

- Allow unobstructed motion for joints that need not to be immobilized
- Prevent impingement sore

- e.g. Short arm POP for distal radius #
 - Extends from knuckles & palmer crease to below elbow ➔ check free motion of elbow, thumb, little finger, & MCPJs
Trimming
Reinforcement

- Adding slab

- Hybrid casting
 - POP for better molding inside, synthetic cast outside for strength & reduced weight

- Ridging
For Wound Inspection

- Making a hump with thick gauze over the wound site for opening of window
- Cut out the hump after POP set
Other Types of Casting

- ¾ Slab for distal radius
- U-slab for humerus
- Sarmiento cast for tibia
Cast Removal

- Initial bivalve at diametrically opposite points on the circumference
 - Concave side
- Cutting should not pass bony prominence
- Oscillating electric plaster saw or plaster shears
- Spreader, bender
- Immerse POP in water, peel out after softened
Basic Equipment
Oscillating Electric Saw

- Vibrates at low amplitude
- Cuts off stiff material but not skin
- Only used on dry and padded plaster
- Stepping without dragging
- The blade can become very hot
Oscillating Electric Saw
Always split on the *Concave* side

Do NOT split plaster on the *Convex* side
Spreader
Plaster Shears
Pitfalls in Plastering

Poor plaster technique will end up with:

- Poor reduction \Rightarrow mal-alignment
- Excessive padding / Edema subsided \Rightarrow loosening
- Too tight \Rightarrow Neurovascular compromise / compartment syndrome
- Too hot \Rightarrow deep burn
- Poor application across joint \Rightarrow joint buckling
- Lamination of plaster \Rightarrow air trapped weaken the cast
- Poor molding \Rightarrow failed immobilization / impingement
- Poor trimming \Rightarrow sharp edges / impingement sore
- Saw injury on removal
What is the problem?
Don’t “sign” on the cast!

Poor Handling
What is the problem?
Buckling
Pressure Sore
Clues of Plaster Sore

- Itching & burning sensation
- Fever, sleep disturbance & fretfulness
- Offensive smell or discharge
- Fluid-stained plaster
Prevention of Pressure Sore

- Good padding
- Proper application of plaster esp over bony prominence & crossing joint
- Out-folding of POP slab to avoid pressure point at corner
- Smooth molding
- Trimming
Plaster Burn

- Heat generated can cause burn, especially if patient is unconscious.

- Lower limb long leg POP
 - need more layers for strength
 - more exothermic reaction

- Suggest to use pre-fabricated splint or synthetic cast for LL.
Allergy
Follow Up Care

 Check POP fitness
 Detect complications: earlier vs late
 Frequency & timing
What happen & What to do?

16 hrs after POP, develop finger numbness and pain

Compartment Syndrome

1. Split all layers of cast, down to skin, throughout the whole length of cast
2. Emergency fasciotomy if clinical suspicious
Incomplete Slab
- for Acute Cases with Gross Swelling

- Use \(\frac{3}{4} \) dorsal slab for initial treatment of distal radial fracture to prevent over tightening of cast
- Reduce the risk of distal edema / compartment syndrome
- Complete cast and then bivalve
 - For better maintainence of reduction
The End
Thank You!